Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 577
Filtrar
1.
BMC Vet Res ; 20(1): 152, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654224

RESUMO

BACKGROUND: Chronic wasting disease (CWD) is a prion disease of captive and free-ranging cervids. Currently, a definitive diagnosis of CWD relies on immunohistochemistry detection of PrPSc in the obex and retropharyngeal lymph node (RPLN) of the affected cervids. For high-throughput screening of CWD in wild cervids, RPLN samples are tested by ELISA followed by IHC confirmation of positive results. Recently, real-time quacking-induced conversion (RT-QuIC) has been used to detect CWD positivity in various types of samples. To develop a blood RT-QuIC assay suitable for CWD diagnosis, this study evaluated the assay sensitivity and specificity with and without ASR1-based preanalytical enrichment and NaI as the main ionic component in assay buffer. RESULTS: A total of 23 platelet samples derived from CWD-positive deer (ELISA + /IHC +) and 30 platelet samples from CWD-negative (ELISA-) deer were tested. The diagnostic sensitivity was 43.48% (NaCl), 65.22% (NaI), 60.87% (NaCl-ASR1) or 82.61% (NaI-ASR1). The diagnostic specificity was 96.67% (NaCl), 100% (NaI), 100% (NaCl-ASR1), or 96.67% (NaI-ASR1). The probability of detecting CWD prion in platelet samples derived from CWD-positive deer was 0.924 (95% CRI: 0.714, 0.989) under NaI-ASR1 experimental condition and 0.530 (95% CRI: 0.156, 0.890) under NaCl alone condition. The rate of amyloid formation (RFA) was greatest under the NaI-ASR1 condition at 10-2 (0.01491, 95% CRI: 0.00675, 0.03384) and 10-3 (0.00629, 95% CRI: 0.00283, 0.01410) sample dilution levels. CONCLUSIONS: Incorporation of ASR1-based preanalytical enrichment and NaI as the main ionic component significantly improved the sensitivity of CWD RT-QuIC on deer platelet samples. Blood test by the improved RT-QuIC assay may be used for antemortem and postmortem diagnosis of CWD.


Assuntos
Plaquetas , Cervos , Sensibilidade e Especificidade , Doença de Emaciação Crônica , Animais , Cervos/sangue , Doença de Emaciação Crônica/diagnóstico , Doença de Emaciação Crônica/sangue , Plaquetas/química , Ensaio de Imunoadsorção Enzimática/veterinária , Príons/sangue
3.
Microbiol Spectr ; 12(3): e0375022, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38299851

RESUMO

Chronic wasting disease (CWD) is a naturally occurring prion disease in cervids that has been rapidly proliferating in the United States. Here, we investigated a potential link between CWD infection and gut microbiome by analyzing 50 fecal samples obtained from CWD-positive animals of different sexes from various regions in the USA compared to 50 CWD-negative controls using high throughput sequencing of the 16S ribosomal RNA and targeted metabolomics. Our analysis reveals promising trends in the gut microbiota that could potentially be CWD-dependent, including several bacterial taxa at each rank level, as well as taxa pairs, that can differentiate between CWD-negative and CWD-positive deer. Through machine-learning, these taxa and taxa pairs at each rank level could facilitate identification of around 70% of both the CWD-negative and the CWD-positive samples. Our results provide a potential tool for diagnostics and surveillance of CWD in the wild, as well as conceptual advances in our understanding of the disease.IMPORTANCEThis is a comprehensive study that tests the connection between the composition of the gut microbiome in deer in response to chronic wasting disease (CWD). We analyzed 50 fecal samples obtained from CWD-positive animals compared to 50 CWD-negative controls to identify CWD-dependent changes in the gut microbiome, matched with the analysis of fecal metabolites. Our results show promising trends suggesting that fecal microbial composition can directly correspond to CWD disease status. These results point to the microbial composition of the feces as a potential tool for diagnostics and surveillance of CWD in the wild, including non-invasive CWD detection in asymptomatic deer and deer habitats, and enable conceptual advances in our understanding of the disease.


Assuntos
Cervos , Doença de Emaciação Crônica , Animais , Doença de Emaciação Crônica/diagnóstico , Doença de Emaciação Crônica/genética , Doença de Emaciação Crônica/metabolismo , Estudos Prospectivos , Fezes , Biomarcadores/metabolismo
4.
Sci Rep ; 14(1): 3804, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360908

RESUMO

Chronic wasting disease (CWD) is a highly contagious, fatal neurodegenerative disease caused by infectious prions (PrPCWD) affecting wild and captive cervids. Although experimental feeding studies have demonstrated prions in feces of crows (Corvus brachyrhynchos), coyotes (Canis latrans), and cougars (Puma concolor), the role of scavengers and predators in CWD epidemiology remains poorly understood. Here we applied the real-time quaking-induced conversion (RT-QuIC) assay to detect PrPCWD in feces from cervid consumers, to advance surveillance approaches, which could be used to improve disease research and adaptive management of CWD. We assessed recovery and detection of PrPCWD by experimental spiking of PrPCWD into carnivore feces from 9 species sourced from CWD-free populations or captive facilities. We then applied this technique to detect PrPCWD from feces of predators and scavengers in free-ranging populations. Our results demonstrate that spiked PrPCWD is detectable from feces of free-ranging mammalian and avian carnivores using RT-QuIC. Results show that PrPCWD acquired in natural settings is detectable in feces from free-ranging carnivores, and that PrPCWD rates of detection in carnivore feces reflect relative prevalence estimates observed in the corresponding cervid populations. This study adapts an important diagnostic tool for CWD, allowing investigation of the epidemiology of CWD at the community-level.


Assuntos
Coiotes , Cervos , Doenças Neurodegenerativas , Príons , Doença de Emaciação Crônica , Animais , Fezes , Doença de Emaciação Crônica/diagnóstico , Doença de Emaciação Crônica/epidemiologia
5.
J Gen Virol ; 105(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38265285

RESUMO

Transmissible spongiform encephalopathies or prion diseases comprise diseases with different levels of contagiousness under natural conditions. The hypothesis has been raised that the chronic wasting disease (CWD) cases detected in Nordic moose (Alces alces) may be less contagious, or not contagious between live animals under field conditions. This study aims to investigate the epidemiology of CWD cases detected in moose in Norway, Sweden and Finland using surveillance data from 2016 to 2022.In total, 18 CWD cases were detected in Nordic moose. All moose were positive for prion (PrPres) detection in the brain, but negative in lymph nodes, all were old (mean 16 years; range 12-20) and all except one, were female. Age appeared to be a strong risk factor, and the sex difference may be explained by few males reaching high age due to hunting targeting calves, yearlings and males.The cases were geographically scattered, distributed over 15 municipalities. However, three cases were detected in each of two areas, Selbu in Norway and Arjeplog-Arvidsjaur in Sweden. A Monte Carlo simulation approach was applied to investigate the likelihood of such clustering occurring by chance, given the assumption of a non-contagious disease. The empirical P-value for obtaining three cases in one Norwegian municipality was less than 0.05, indicating clustering. However, the moose in Selbu were affected by different CWD strains, and over a 6 year period with intensive surveillance, the apparent prevalence decreased, which would not be expected for an ongoing outbreak of CWD. Likewise, the three cases in Arjeplog-Arvidsjaur could also indicate clustering, but management practices promotes a larger proportion of old females and the detection of the first CWD case contributed to increased awareness and sampling.The results of our study show that the CWD cases detected so far in Nordic moose have a different epidemiology compared to CWD cases reported from North America and in Norwegian reindeer (Rangifer tarandus tarandus). The results support the hypothesis that these cases are less contagious or not contagious between live animals under field conditions. To enable differentiation from other types of CWD, we support the use of sporadic CWD (sCWD) among the names already in use.


Assuntos
Cervos , Doença de Emaciação Crônica , Feminino , Masculino , Animais , Estudos Epidemiológicos , Encéfalo , Análise por Conglomerados
6.
J Wildl Dis ; 60(2): 496-501, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38287919

RESUMO

As chronic wasting disease (CWD) continues to spread across North America, the relationship between CWD and host genetics has become of interest. In Rocky Mountain elk (Cervus elaphus nelsoni), one or two copies of a leucine allele at codon 132 of the prion protein gene (132L*) has been shown to prolong the incubation period of CWD. Our study examined the relationship between CWD epidemiology and codon 132 evolution in elk from Wyoming, USA, from 2011 to 2018. Using PCR and Sanger sequencing, we genotyped 997 elk and assessed the relationship between genotype and CWD prevalence estimated from surveillance data. Using logistic regression, we showed that each 1% increase in CWD prevalence is associated with a 9.6% increase in the odds that an elk would have at least one copy of leucine at codon 132. In some regions, however, 132L* variants were found in the absence of CWD, indicating that evolutionary and epidemiologic patterns can be heterogeneous across space and time. We also provide evidence that naturally occurring CWD is not rare in 132L* elk, which merits the study of shedding kinetics in 132L* elk and the influence of genotype on CWD strain diversity. The management implications of cervid adaptations to CWD are difficult to predict. Studies that investigate the degree to which evolutionary outcomes are shaped by host spatial structure can provide useful epidemiologic insight, which can in turn aid management by informing scale and extent of mitigation actions.


Assuntos
Cervos , Príons , Doença de Emaciação Crônica , Animais , Doença de Emaciação Crônica/epidemiologia , Doença de Emaciação Crônica/genética , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Leucina/genética , Leucina/metabolismo , Códon/metabolismo , Cervos/metabolismo
7.
EMBO Rep ; 25(1): 334-350, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38191872

RESUMO

Chronic wasting disease (CWD) is a prion disease affecting farmed and free-ranging cervids. CWD is rapidly expanding across North America and its mechanisms of transmission are not completely understood. Considering that cervids are commonly afflicted by nasal bot flies, we tested the potential of these parasites to transmit CWD. Parasites collected from naturally infected white-tailed deer were evaluated for their prion content using the protein misfolding cyclic amplification (PMCA) technology and bioassays. Here, we describe PMCA seeding activity in nasal bot larvae collected from naturally infected, nonclinical deer. These parasites efficiently infect CWD-susceptible mice in ways suggestive of high infectivity titers. To further mimic environmental transmission, bot larvae homogenates were mixed with soils, and plants were grown on them. We show that both soils and plants exposed to CWD-infected bot homogenates displayed seeding activity by PMCA. This is the first report describing prion infectivity in a naturally occurring deer parasite. Our data also demonstrate that CWD prions contained in nasal bots interact with environmental components and may be relevant for disease transmission.


Assuntos
Cervos , Príons , Doença de Emaciação Crônica , Animais , Camundongos , Príons/metabolismo , Doença de Emaciação Crônica/metabolismo , Cervos/metabolismo , Solo
8.
Sci Rep ; 13(1): 20170, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978207

RESUMO

Chronic wasting disease (CWD) is a prion disease affecting cervids. Confirmatory testing of CWD is currently performed postmortem in obex and lymphoid tissues. Extensive evidence demonstrates the presence of infectious prions in feces of CWD-infected deer using in vitro prion-amplification techniques and bioassays. In experimental conditions, this has been achieved as soon as 6-month post-inoculation, suggesting this sample type is a candidate for antemortem diagnosis. In the present study, we optimized the detection of CWD-prions in fecal samples from naturally infected, pre-clinical white-tailed deer by comparing protocols aiming to concentrate CWD-prions with direct spiking of the sample into the PMCA reactions. Results of this screening were compared with similar analyses made in blood. Our data shows that CWD-prion detection in feces using PMCA is best in the absence of sample pre-treatments. We performed a screening of 169 fecal samples, detecting CWD-prions with diagnostic sensitivity and specificity of 54.81% and 98.46%, respectively. In addition, the PMCA seeding activity of 76 fecal samples was compared with that on blood of matched deer. Our findings, demonstrate that CWD-prions in feces and blood are increased at late pre-clinical stages, exhibiting similar detection in both sample types (> 90% sensitivity) when PrP96GG animals are tested. Our findings contribute to understand prion distribution across different biological samples and polymorphic variants in white-tailed deer. This information is also relevant for the current efforts to identify platforms to diagnose CWD.


Assuntos
Cervos , Príons , Doença de Emaciação Crônica , Animais , Príons/análise , Doença de Emaciação Crônica/diagnóstico , Fezes/química
9.
Sci Rep ; 13(1): 20171, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978312

RESUMO

Chronic wasting disease (CWD) is a prion disease affecting cervids. CWD diagnosis is conducted through enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC) in retropharyngeal lymph nodes. Unfortunately, these techniques have limited sensitivity against the biomarker (CWD-prions). Two in vitro prion amplification techniques, real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA), have shown promise in detecting CWD-prions in tissues and bodily fluids. Recent studies have demonstrated that RT-QuIC yields similar results compared to ELISA and IHC. Here, we analyzed 1003 retropharyngeal lymph nodes (RPLNs) from Texas white-tailed deer. PMCA detected CWD at a higher rate compared to ELISA/IHC, identified different prion strains, and revealed the presence of CWD-prions in places with no previous history. These findings suggest that PMCA exhibits greater sensitivity than current standard techniques and could be valuable for rapid and strain-specific CWD detection.


Assuntos
Cervos , Príons , Doença de Emaciação Crônica , Animais , Imuno-Histoquímica , Linfonodos/patologia , Príons/análise , Doença de Emaciação Crônica/metabolismo , Ensaio de Imunoadsorção Enzimática
10.
mSphere ; 8(5): e0027223, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37800903

RESUMO

Chronic wasting disease (CWD) prions cause fatal neuropathies in farmed and free-ranging cervids. The deposition of prions in natural and humanmade environmental components has been implicated as a major mechanism mediating CWD spread in wild and captive populations. Prions can be deposited in the environment through excreta, tissues, and carcasses from pre-clinical and clinical animals. Furthermore, burial of CWD-positive animals may reduce but not completely mitigate prion spread from carcasses into the surrounding environment. Here, we analyzed exhumed, decaying deer carcasses for the presence of CWD prions. By analyzing tongue tissues through the protein misfolding cyclic amplification (PMCA) technique, we were able to identify seven out of 95 exhumed white-tailed deer carcasses as CWD prions carriers. Confirmatory analyses were performed using the real-time quaking-induced conversion (RT-QuIC) technique. In addition, we evaluated the potential contamination of the pens that housed these animals by swabbing feeders and waterers. PMCA analyses of swabs confirmed CWD contamination on farming equipment. This work demonstrates the usefulness of PMCA to detect CWD prions in a variety of contexts, including exhumed/decaying tissues. In addition, this is the first report demonstrating swabbing coupled with PMCA as a method for the detection of prion seeding activity on naturally exposed surfaces. Considering that this study was focused on a single site, further studies should confirm whether prion amplification assays are useful to identify CWD prions not only in animals but also in the environment that contains them. IMPORTANCE Environmental contamination is thought to be a major player in the spread of chronic wasting disease (CWD), a fatal prion disease affecting a wide variety of cervid species. At present, there are no officially approved methods allowing for the detection of prion infectivity in environmental components. Importantly, animal as well as anthropogenic activities are thought to contribute to prion environmental contamination. Here, we detected CWD prions in exhumed white-tailed deer carcasses by using the protein misfolding cyclic amplification (PMCA) assay. In addition, we identified CWD prions in feeders used within the infected facility. These results highlight the potential role of PMCA in identifying prion infectivity in a variety of scenarios, ranging from decaying tissues to farming equipment.


Assuntos
Cervos , Príons , Doença de Emaciação Crônica , Animais , Doença de Emaciação Crônica/diagnóstico , Doença de Emaciação Crônica/metabolismo , Bioensaio
11.
Vet Res ; 54(1): 74, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684668

RESUMO

Prion diseases are a group of neurodegenerative, transmissible, and fatal disorders that affect several animal species. They are characterized by the conformational conversion of the cellular prion protein (PrPC) into the pathological prion protein (PrPSc). In 2016, chronic wasting disease (CWD) gained great importance at European level due to the first disease detection in a wild reindeer (Rangifer tarandus) in Norway. The subsequent intensive CWD surveillance launched in cervids resulted in the detection of CWD in moose (Alces alces), with 11 cases in Norway, 3 in Finland and 4 in Sweden. These moose cases differ considerably from CWD cases in North American and reindeer in Norway, as PrPSc was detectable in the brain but not in lymphoid tissues. These facts suggest the occurrence of a new type of CWD. Here, we show some immunohistochemical features that are clearly different from CWD cases in North American and Norwegian reindeer. Further, the different types of PrPSc deposits found among moose demonstrate strong variations between the cases, supporting the postulation that these cases could carry multiple strains of CWD.


Assuntos
Cervos , Príons , Rena , Doença de Emaciação Crônica , Animais , Proteínas Priônicas , Doença de Emaciação Crônica/epidemiologia , Finlândia/epidemiologia , Suécia/epidemiologia , Encéfalo , Noruega/epidemiologia
12.
Vet Res ; 54(1): 84, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37773068

RESUMO

Prion diseases, including chronic wasting disease (CWD) in cervids, are fatal neurodegenerative disorders caused by the misfolding of cellular prion proteins. CWD is known to spread among captive and free-ranging deer in North America. In 2016, an outbreak of contagious CWD was detected among wild reindeer in Norway, marking the first occurrence of the disease in Europe. Additionally, new sporadic forms of CWD have been discovered in red deer in Norway and moose in Fennoscandia. We used serial protein misfolding cyclic amplification to study the ability of Norwegian prion isolates from reindeer, red deer, and moose (two isolates), as well as experimental classical scrapie from sheep, to convert a panel of 16 brain homogenates (substrates) from six different species with various prion protein genotypes. The reindeer CWD isolate successfully converted substrates from all species except goats. The red deer isolate failed to convert sheep and goat substrates but exhibited amplification in all cervid substrates. The two moose isolates demonstrated lower conversion efficacies. The wild type isolate propagated in all moose substrates and in the wild type red deer substrate, while the other isolate only converted two of the moose substrates. The experimental classical scrapie isolate was successfully propagated in substrates from all species tested. Thus, reindeer CWD and classical sheep scrapie isolates were similarly propagated in substrates from different species, suggesting the potential for spillover of these contagious diseases. Furthermore, the roe deer substrate supported conversion of three isolates suggesting that this species may be vulnerable to prion disease.


Assuntos
Cervos , Doenças das Cabras , Doenças Priônicas , Príons , Rena , Scrapie , Doenças dos Ovinos , Doença de Emaciação Crônica , Animais , Ovinos , Príons/genética , Rena/metabolismo , Doenças Priônicas/veterinária , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Doença de Emaciação Crônica/genética , Noruega/epidemiologia , Cabras/metabolismo
13.
Biochem J ; 480(19): 1485-1501, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37747806

RESUMO

Chronic wasting disease is a fatal prion condition of cervids such as deer, elk, moose and reindeer. Secretion and excretion of prion infectivity from North American cervids with this condition causes environmental contamination and subsequent efficient lateral transmission in free-ranging and farmed cervids. Variants of cervid PrP exist that affect host susceptibility to chronic wasting disease. Cervid breeding programmes aimed at increasing the frequency of PrP variants associated with resistance to chronic wasting disease may reduce the burden of this condition in animals and lower the risk of zoonotic disease. This strategy requires a relatively rapid and economically viable model system to characterise and support selection of prion disease-modifying cervid PrP variants. Here, we generated cervid PrP transgenic Drosophila to fulfil this purpose. We have generated Drosophila transgenic for S138 wild type cervid PrP, or the N138 variant associated with resistance to chronic wasting disease. We show that cervid PrP Drosophila accumulate bona fide prion infectivity after exposure to cervid prions. Furthermore, S138 and N138 PrP fly lines are susceptible to cervid prion isolates from either North America or Europe when assessed phenotypically by accelerated loss of locomotor ability or survival, or biochemically by accumulation of prion seeding activity. However, after exposure to European reindeer prions, N138 PrP Drosophila accumulated prion seeding activity with slower kinetics than the S138 fly line. These novel data show that prion susceptibility characteristics of cervid PrP variants are maintained when expressed in Drosophila, which highlights this novel invertebrate host in modelling chronic wasting disease.


Assuntos
Príons , Doença de Emaciação Crônica , Animais , Animais Geneticamente Modificados , Cervos/genética , Drosophila , Príons/genética , Rena , Doença de Emaciação Crônica/genética
14.
Prev Vet Med ; 218: 106000, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37634409

RESUMO

The objective of this study was to evaluate risks related to introduction of Chronic Wasting Disease (CWD) to farmed cervid herds in Minnesota (MN), Pennsylvania (PA), and Wisconsin (WI). This was the first study to evaluate risk factors related to multiple pathways of CWD transmission to farmed cervid herds. Participating herds in this case-control study included 22 case and 49 control herds identified through participation in the respective mandatory State CWD herd program. Data was voluntarily collected from white-tailed deer (WTD) study herds using a questionnaire and state animal health agency databases. Univariable analyses identified associations between CWD-positive herds and variables representing different transmission pathways, including direct contact with infected farmed cervids (imported from a herd that later tested positive for CWD) odds ratio (OR):7.16, 95 % confidence intervals (CI):1.64-31.21 and indirect contact with infected wild cervids (access of domestic cats to pens or feed storage area) OR:4.07, 95 % CI:1.35-12.26, observed evidence of mammalian scavengers inside or outside of fenceline in the previous 12 months OR:6.55, 95 % CI:1.37-31.32, ≤ 5 km distance to nearest detected CWD-positive wild cervid OR:3.08, 95 % CI:1.01-9.39, forested area crosses the perimeter fenceline OR:3.54, 95 % CI:1.13-11.11, ≤ 0.3 m distance of water source to fenceline OR:4.71, 95 % CI:1.60-13.83, and water source shared with wild cervids (running or standing water) OR:4.17, 95 % CI:1.34-12.92. Three variables from univariable analyses that represented different biological transmission pathways were placed in a Firth's penalized maximum likelihood multivariable logistic regression to evaluate associations between transmission pathway and CWD herd infection status. For the issue of low sample size and overfitting, 95 % CIs for estimated coefficients for the three variables were computed via bootstrapping of 10,000 independent bootstrap samples. The three biological variables were significantly associated with herd CWD infection status: imported cervids from a herd that later tested positive for CWD (OR:5.63; 95 % CI:1.1-28.2), ≤ 0.3 m distance of cervid water source to perimeter fenceline (OR:4.83; 95 % CI:1.5-16.1), and ≤ 5 km distance to nearest detected CWD-positive wild cervid (OR:4.10; 95 % CI:1.1-15.2). The risk factors associated with CWD herd status identified in this study indicated the importance of transmission through direct contact pathways with infected cervid herds (introduction of cervids from herds later identified as CWD-infected) and indirect contact pathways with infected wild cervids that could be related to other animals through the perimeter fence. Further studies are needed to confirm and clarify understanding of indirect pathways to allow development of improved biosecurity practices to prevent CWD introduction to cervid herds.


Assuntos
Doenças do Gato , Cervos , Doença de Emaciação Crônica , Animais , Gatos , Minnesota/epidemiologia , Pennsylvania/epidemiologia , Estudos de Casos e Controles , Doença de Emaciação Crônica/epidemiologia , Wisconsin/epidemiologia , Fatores de Risco
15.
PLoS One ; 18(8): e0286266, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37647272

RESUMO

The first case of CWD in Europe was detected in a Norwegian reindeer in 2016, followed later by two CWD cases in Norwegian moose. To prevent the potential spread of CWD to the EU, the European Commission (Regulation EU 2017_1972) implemented a CWD surveillance programme in cervids in the six countries having reindeer and or moose (Estonia, Finland, Latvia, Lithuania, Poland, and Sweden). Each country had to test a minimum of 3000 cervids for CWD using diagnostic rapid tests approved by the EC Regulation. Experimental transmission studies in rodents have demonstrated that the CWD strains found in Norwegian reindeer are different from those found in moose and that these European strains are all different from the North American ones. Data on the performances of authorised rapid tests are limited for CWD (from North America) and are currently minimal for CWD from Europe, due to the paucity of positive material. The aim of this study was to evaluate the diagnostic performances of three of the so-called "rapid" tests, commercially available and approved for TSE diagnosis in cattle and small ruminants, to detect the CWD strains circulating in Europe. The performances of these three tests were also compared to two different confirmatory western blot methods. Using parallel testing on the same panel of available samples, we evaluated here the analytical sensitivity of these methods for TSE diagnosis of CWD in Norwegian cervids tissues. Our results show that all the methods applied were able to detect the CWD positive samples even if differences in analytical sensitivity were clearly observed. Although this study could not assess the test accuracy, due to the small number of samples available, it is conceivable that the rapid and confirmatory diagnostic systems applied for CWD surveillance in Northern Europe are reliable tools.


Assuntos
Cervos , Rena , Doença de Emaciação Crônica , Animais , Bovinos , Doença de Emaciação Crônica/diagnóstico , Europa (Continente) , Ruminantes , Western Blotting
16.
Vet Res ; 54(1): 48, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37328789

RESUMO

Prion diseases are fatal and malignant infectious encephalopathies induced by the pathogenic form of prion protein (PrPSc) originating from benign prion protein (PrPC). A previous study reported that the M132L single nucleotide polymorphism (SNP) of the prion protein gene (PRNP) is associated with susceptibility to chronic wasting disease (CWD) in elk. However, a recent meta-analysis integrated previous studies that did not find an association between the M132L SNP and susceptibility to CWD. Thus, there is controversy about the effect of M132L SNP on susceptibility to CWD. In the present study, we investigated novel risk factors for CWD in elk. We investigated genetic polymorphisms of the PRNP gene by amplicon sequencing and compared genotype, allele, and haplotype frequencies between CWD-positive and CWD-negative elk. In addition, we performed a linkage disequilibrium (LD) analysis by the Haploview version 4.2 program. Furthermore, we evaluated the 3D structure and electrostatic potential of elk prion protein (PrP) according to the S100G SNP using AlphaFold and the Swiss-PdbViewer 4.1 program. Finally, we analyzed the free energy change of elk PrP according to the S100G SNP using I-mutant 3.0 and CUPSAT. We identified 23 novel SNP of the elk PRNP gene in 248 elk. We found a strong association between PRNP SNP and susceptibility to CWD in elk. Among those SNP, S100G is the only non-synonymous SNP. We identified that S100G is predicted to change the electrostatic potential and free energy of elk PrP. To the best of our knowledge, this was the first report of a novel risk factor, the S100G SNP, for CWD.


Assuntos
Cervos , Príons , Doença de Emaciação Crônica , Animais , Proteínas Priônicas/genética , Proteínas Priônicas/metabolismo , Príons/genética , Doença de Emaciação Crônica/genética , Doença de Emaciação Crônica/patologia , Polimorfismo de Nucleotídeo Único , Cervos/genética , Fatores de Risco
17.
Front Immunol ; 14: 1156451, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122761

RESUMO

Prion diseases are a novel class of infectious disease based in the misfolding of the cellular prion protein (PrPC) into a pathological, self-propagating isoform (PrPSc). These fatal, untreatable neurodegenerative disorders affect a variety of species causing scrapie in sheep and goats, bovine spongiform encephalopathy (BSE) in cattle, chronic wasting disease (CWD) in cervids, and Creutzfeldt-Jacob disease (CJD) in humans. Of the animal prion diseases, CWD is currently regarded as the most significant threat due its ongoing geographical spread, environmental persistence, uptake into plants, unpredictable evolution, and emerging evidence of zoonotic potential. The extensive efforts to manage CWD have been largely ineffective, highlighting the need for new disease management tools, including vaccines. Development of an effective CWD vaccine is challenged by the unique biology of these diseases, including the necessity, and associated dangers, of overcoming immune tolerance, as well the logistical challenges of vaccinating wild animals. Despite these obstacles, there has been encouraging progress towards the identification of safe, protective antigens as well as effective strategies of formulation and delivery that would enable oral delivery to wild cervids. In this review we highlight recent strategies for antigen selection and optimization, as well as considerations of various platforms for oral delivery, that will enable researchers to accelerate the rate at which candidate CWD vaccines are developed and evaluated.


Assuntos
Antígenos , Cervos , Proteínas PrPC , Desenvolvimento de Vacinas , Doença de Emaciação Crônica , Zoonoses , Animais , Humanos , Administração Oral , Antígenos/administração & dosagem , Antígenos/imunologia , Vetores Genéticos , Imunoterapia , /imunologia , Proteínas PrPC/imunologia , Proteínas PrPC/uso terapêutico , Vacinação , Doença de Emaciação Crônica/prevenção & controle , Doença de Emaciação Crônica/transmissão , Zoonoses/prevenção & controle , Zoonoses/transmissão
18.
Sci Rep ; 13(1): 8137, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208385

RESUMO

Rapid and targeted management actions are a prerequisite to efficiently mitigate disease outbreaks. Targeted actions, however, require accurate spatial information on disease occurrence and spread. Frequently, targeted management actions are guided by non-statistical approaches that define the affected area by a pre-determined distance surrounding a small number of disease detections. As an alternative, we present a long-recognized but underutilized Bayesian technique that uses limited local data and informative priors to make statistically valid predictions and forecasts about disease occurrence and spread. As a case study, we use limited local data that were available after the detection of chronic wasting disease in Michigan, U.S. along with information rich priors obtained from a previous study in a neighboring state. Using these limited local data and informative priors, we generate statistically valid predictions of disease occurrence and spread for the Michigan study area. This Bayesian technique is conceptually and computationally simple, relies on little to no local data, and is competitive with non-statistical distance-based metrics in all performance evaluations. Bayesian modeling has added benefits because it allows practitioners to generate immediate forecasts of future disease conditions and provides a principled framework to incorporate new data as they accumulate. We contend that the Bayesian technique offers broad-scale benefits and opportunities to make statistical inference across a diversity of data-deficient systems, not limited to disease.


Assuntos
Doença de Emaciação Crônica , Animais , Humanos , Teorema de Bayes , Michigan/epidemiologia , Previsões
19.
J Vis Exp ; (195)2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37212578

RESUMO

Abnormal prion proteins (PrPSc) are the disease-associated isoform of cellular prion protein and diagnostic markers of transmissible spongiform encephalopathies (TSEs). These neurodegenerative diseases affect humans and several animal species and include scrapie, zoonotic bovine spongiform encephalopathy (BSE), chronic wasting disease of cervids (CWD), and the newly identified camel prion disease (CPD). Diagnosis of TSEs relies on immunodetection of PrPSc by application of both immunohistochemistry (IHC) and western immunoblot methods (WB) on encephalon tissues, namely, the brainstem (obex level). IHC is a widely used method that uses primary antibodies (monoclonal or polyclonal) against antigens of interest in cells of a tissue section. The antibody-antigen binding can be visualized by a color reaction that remains localized in the area of the tissue or cell where the antibody was targeted. As such, in prion diseases, as in other fields of research, the immunohistochemistry techniques are not solely used for diagnostic purposes but also in pathogenesis studies. Such studies involve detecting the PrPSc patterns and types from those previously described to identify the new prion strains. As BSE can infect humans, it is recommended that biosafety laboratory level-3 (BSL-3) facilities and/or practices are used to handle cattle, small ruminants, and cervid samples included in the TSE surveillance. Additionally, containment and prion-dedicated equipment are recommended, whenever possible, to limit contamination. The PrPSc IHC procedure consists of a formic acid epitope-demasking step also acting as a prion inactivation measure, as formalin-fixed and paraffin-embedded tissues used in this technique remain infectious. When interpreting the results, care must be taken to distinguish non-specific immunolabeling from target labeling. For this purpose, it is important to recognize artifacts of immunolabeling obtained in known TSE-negative control animals to differentiate those from specific PrPSc immunolabeling types, which can vary between TSE strains, host species, and prnp genotype, further described herein.


Assuntos
Cervos , Encefalopatia Espongiforme Bovina , Doenças Priônicas , Príons , Scrapie , Doença de Emaciação Crônica , Animais , Ovinos , Bovinos , Humanos , Proteínas Priônicas , Imuno-Histoquímica , Doenças Priônicas/diagnóstico , Doenças Priônicas/metabolismo , Scrapie/diagnóstico , Príons/metabolismo , Encefalopatia Espongiforme Bovina/diagnóstico , Encefalopatia Espongiforme Bovina/patologia , Doença de Emaciação Crônica/diagnóstico
20.
Sci Rep ; 13(1): 7838, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188858

RESUMO

Chronic wasting disease (CWD) is a fatal neurodegenerative disease caused by infectious prions (PrPCWD) affecting cervids. Circulating PrPCWD in blood may pose a risk for indirect transmission by way of hematophagous ectoparasites acting as mechanical vectors. Cervids can carry high tick infestations and exhibit allogrooming, a common tick defense strategy between conspecifics. Ingestion of ticks during allogrooming may expose naïve animals to CWD, if ticks harbor PrPCWD. This study investigates whether ticks can harbor transmission-relevant quantities of PrPCWD by combining experimental tick feeding trials and evaluation of ticks from free-ranging white-tailed deer (Odocoileus virginianus). Using the real-time quaking-induced conversion (RT-QuIC) assay, we show that black-legged ticks (Ixodes scapularis) fed PrPCWD-spiked blood using artificial membranes ingest and excrete PrPCWD. Combining results of RT-QuIC and protein misfolding cyclic amplification, we detected seeding activity from 6 of 15 (40%) pooled tick samples collected from wild CWD-infected white-tailed deer. Seeding activities in ticks were analogous to 10-1000 ng of CWD-positive retropharyngeal lymph node collected from deer upon which they were feeding. Estimates revealed a median infectious dose range of 0.3-42.4 per tick, suggesting that ticks can take up transmission-relevant amounts of PrPCWD and may pose a CWD risk to cervids.


Assuntos
Cervos , Ixodes , Doenças Neurodegenerativas , Príons , Doença de Emaciação Crônica , Animais , Príons/metabolismo , Cervos/metabolismo , Doença de Emaciação Crônica/metabolismo , Ixodes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...